STUDIES ON DIALKYLTIN DIACETATE DERIVATIVES

YUTAKA MAEDA AND ROKURO OKAWARA

Department of Applied Chemistry, Osaka University Higashinoda, Miyakojima, Osaka (Japan) (Received March 21st, 1967)

Dialkyltin diacetates were described by Cahours¹ in 1860 and their derivatives have been studied by Harada²⁻⁴. Recently, many researchers have been interested in the structural chemistry of organotin compounds and several brief descriptions on dialkyltin acetate derivatives³⁻¹² have been reported.

In this paper we will report the preparation and novel properties of a series of dialkyltin diacetates, $R_2Sn(OAc)_2$, and their hydrolyzed derivatives, such as $[(AcO)R_2Sn]_2O$, $(AcO)R_2SnOSnR_2(OH)$ ($R=CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$). Since some of these compounds were found to be exceptionally good catalysts for the isocyanate-hydroxyl reaction¹³, it is worthwhile to seek structural information concerning these compounds. The structures were deduced by means of molecular weight determination, electric conductivity, IR and PMR measurements.

EXPERIMENTAL

Materials

Dialkyltin oxides were synthesized by the standard method¹⁴. Acetic anhydride was of commercial grade. All solvents were purified by methods described in the literature¹⁵ for the instrumental measurements.

Dialkyltin diacetates, $R_2Sn(OAc)_2$ ($R=CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$)

Dimethyltin oxide (8.2 g, 50 mmole) was dissolved in a slight excess of acetic anhydride (6.2 g, 60 mmole) with heating, and the unreacted anhydride was distilled off under nitrogen. The residual liquid, on vacuum distillation, gave solid dimethyltin diacetate. The other dialkyltin diacetates were prepared in a similar manner. All these compounds are hygroscopic and do not show sharp melting points.

Tetraalkyl-1,3-diacetoxydistannoxanes, $[(AcO)R_2Sn]_2O$ ($R = CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$)

The methyl compound was obtained quantitatively by mixing dimethyltin diacetate and a large amount of water. The white, amorphous product was purified by recrystallizations from methanol or chloroform. The other compounds were obtained similarly. They were recrystallized from benzene, toluene or ligroin containing a drop of acetic acid. These compounds were also obtained from the reaction of stoichiometric mixtures of the dialkyltin oxide and acetic acid in a similar solvent. Tetraalkyl-1-acetoxy-3-hydroxydistannoxanes, $(AcO)R_2SnOSnR_2(OH)$ ($R = CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9^5$)

To a solution of $[(AcO)(C_4H_9)_2Sn]_2O$ (6.0 g, 10 mmole) in acetone (50 ml) was added an equimolar amount of aqueous pyridine (0.1 N), and the mixture was refluxed for a short time. The white precipitate, $(AcO)(C_4H_9)_2SnOSn(C_4H_9)_2(OH)$, was recrystallized from benzene (4.9 g, yield 80%). In similar fashion, the n-propyl and ethyl compounds were obtained (yield 80%), but the methyl compound could not be prepared in this manner. Refluxing a mixture of $(CH_3)_2SnO(1.65 \text{ g}, 10 \text{ mmole})$ and $[(AcO)(CH_3)_2Sn]_2O$ (2.15 g, 5 mmole) in ethanol containing a small amount of water, gave a compound which showed characteristic CO_2 and OH vibrational bands. However, this compound seemed to change into a mixture of $[(AcO)(CH_3)_2SnO]_2O$ in a dry atmosphere. Melting points and analytical data are given in Table 1 together with those for the other compounds described above.

Molecular weight and electric conductivity

Molecular weights of hygroscopic dialkyltin diacetates were determined

TABLE I

ANALYSES OF DIALKYLTIN DIACETATES AND THEIR DERIVATIVES

Compound	M.p. (°C) found (reported)	% Sn found (calcd.)	% C found (calcd.)	% H found (calcd.)
$R_2 Sn(OAc)_2$				
$R = CH_3^a$	ca. 67	44.35 (44.48)	27.48 (27.01)	4.54 (4.53)
C ₂ H ₅ ^b	ca. 44	40.19 (40.05)		. ,
$n-C_3H_7^c$	ca. 36	36.78 (36.75)		
n-C ₄ H ₉ ^d	<i>ca.</i> 8	33.81 (33.82)		
[(AcO)R ₂ Sn] ₂ O				
R=CH ₃	236 (240) ⁹	54.89 (55.00)	22.36 (22.26)	4.16 (4.20)
C ₂ H ₅	105–106	48.56 (48.67)	29.82 (29.55)	5.38 (5.37)
n-C ₃ H ₇	111-113	43.71 (43.65)	35.02 (35.32)	6.17 (6.30)
n-C ₄ H ₉	58–60 (58–60) ⁶	39.62 (39.57)	40.49	7.12
	(38-00)*	(39.37)	(40.04)	(7.06)
$(AcO)R_2SnOSnR_2(OH)$ R=C_2H_5	ca. 200°	53.40 (53.28)		
n-C ₃ H ₇	206–208	47.45	32.55	6.36
n-C ₄ H ₉	129 (129) ¹²	(47.31) 42.50 (42.55)	(33.02) 38.71 (38.73)	(6.40) 7.15 (7.23)

^a B.p. 93-94°/5 mm. ^b B.p. 97°/5 mm. ^c B.p. 115°/5 mm (Lit.¹⁴ 81-83°/1 mm). ^d B.p. 130°/5 mm (Lit.¹⁴ 142-145°/10 mm). ^e Partially decomposes.

cryoscopically in benzene under dry nitrogen. A Mechrolab vapor pressure osmometer was used for the other compounds dissolved in chloroform or benzene at 25°. The

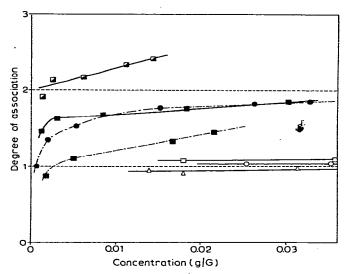


Fig. 1. Degree of association of dialkyltin diacetates and their derivatives. \bigcirc (CH₃)₂Sn(OAc)₂, \triangle (C₃H₇)₂-Sn(OAc)₂, \square (C₄H₉)₂Sn(OAc)₂ \blacklozenge [(AcO)(CH₃)₂Sn]₂O. \blacksquare [(AcO)(C₄H₉)₂Sn]₂O, \blacksquare (AcO)(C₄H₉)₂-SnOSn(C₄H₉)₂(OH), — in benzene,^r--- in chloroform.

results are shown in Fig. 1. An appreciable electric conductivity was not observed for $[(AcO)(CH_3)_2Sn]_2O$ or $[(AcO)(C_4H_9)_2Sn]_2O$ in chloroform (0.05 *M*).

Infrared spectra

The infrared absorption spectra were recorded using a Hitachi EPI-2G and a Hitachi EPI-L spectrophotometer, both equipped with gratings covering the range 4000 cm⁻¹ to 250 cm⁻¹. They were recorded as mulls in nujol and hexachlorobutadiene, or in liquid films. Solution spectra in benzene, cyclohexane, carbon tetrachloride or chloroform at various concentrations were also obtained. Results are given in Fig. 2 and 3, and Table 3, 4 and 5 with tentative assignments.

TABLE 2

tin proton coupling constants and proton chemical shifts at 20° for $(CH_3)_2Sn(OAc)_2$ and $[(AcO)(CH_3)_2Sn]_2O$

Compounds	J(¹¹⁷ Sn-CH ₃) (cps)	J(¹¹⁹ Sn-CH ₃) (cps)	τ(Sn-CH ₃) (ppm) [«]	τ(CH ₃ COO) (ppm) ^a
$(CH_3)_2 Sn (OAc)_2^b$	78.9	82.5	9.09	7.99
$[(AcO)(CH_3)_2Sn]_2O^c$	83.2 86.3	86.8 89.0	9.20 9.18	8.05

^a Tetramethylsilane τ 10.0 ppm. ^b 20% CCl₄. ^c 9% CHCl₃.

$R = CH_3$		$R = C_2 H_5$		$R=n-C_3H_7$	r,	$R=n-C_4H_9$	H ₉	Assignments
Crystal. film	C ₆ H ₁₂ 7% soln.	Neat liquid	C ₆ H ₁₂ 5% soln,	Neat liquid	C ₆ H ₁₂ 5% soln.	Neat liquid	C ₆ H ₁₂ 5 % soln.	
1600 s 1560 s	1607 s	1600 s 1570 s	1607 s	1605 s 1570 s	1609 s	1605 s 1570 s	1609 s }	CO ₂ asym. str.
1438 sh	1433 sh 1405 sh	1422 sh	1425 sh 1400 sh	1432 sh	1425 sh 1400 sh	1425 s	1425 sh } 1400 sh }	CO ₂ sym. str. ^a
1374 s	1380 s	1376 s	1378 s	1378 s	1377 s	1380 s	1377 s)	
1334 s	1331 s	1330 s	1331 s	1332 s	1330 s	1333 m	1333 s	CH ₃ deform. ⁴
698 s	698 s	679 s 667 s	697 s 685 s	693 s 666 s	695 s	s 069	694 s }	CO ₂ scissor.
619 m	622 m	622 m	622 m	622 m	622 m	623 m	622 m	CO ₂ out-of-plane
571 m 526 m	574 m 528 m	542 m 501 m	542 m _. 501 w					bend. SnC ₂ antisym. str. SnC ₂ sym. str.
492 w	493 w	492 sh	492 w	492 W	491 w	491 w	490 w	CO2 rock. (in plane)
304 s 280 sh	305 s	302 s 280 sh	304 s	303 s 281 sh	304 s	302 s	303 s {	SnO str.

J. Organometal. Chem., 10 (1967) 247-256

250

-

.

TABLE 3

.

$R = CH_3$		$R = C_2 H_5$		$R=n-C_3H_7$	L,	$R = n \cdot C_4 H_9$	Н ₉		Assignments
Solid state	CHCl ₃ 9% soln.	Solid state	CHCl ₃ 5% soln.	Solid state	CHCl ₃ 5% soln.	Solid state	C ₆ H ₁₂ 5% soln.	CHCI ₃ 5% soln.	
	1630 s 1605 m	1643 s	1627 s 1601 c	1630 s	1627 s 1601 e	1637 s	1639 s	1628 s) 1605 s)	CO. acum etr
1560 s	1562 s	1562 s	1564 s	1570 s	1564 s	1570 s	1571 s	1565 s J	
1418 s	1426 s		1421 s	1428 s	1422 s	1420 s	1422 s	1425 s)	CO. svm str
1398 sh 1334 m	1378 s 1319 s	1370 s 1301 s	1379 s 1332 s	1372 s 1312 s	1378 s 1328 s	1376 s 1307 s	1373 s 1306 s	1378 s 1320 s	and CH ₃ deform.
666 s 656 s	a a	684 s 668 s		675 s		671 s	675 s	е е	CO ₂ scissor.
623 sh	645 s	645 s 613 m	630 s	640 s 676 sh	ء د) د د	652 s 636 s	641 s 671 sh	{ , 103	SnO str. and
\$ 010				115 070	\$ 070	\$ \$ \$ \$	US 170	(\$ 170	CU2 out-ol-plane bend
579 m 530 s	575 s 560 sh 525 m	542 w	560 w 543 m		558 w			558 m, br	SnC ₂ str. SnO (monomer?) SnC ₂ str.
505 s 493 sh	505 s 481 sh	495 s 476 s	490 s	482 s	488 s	475s	485 s	485 s }	SnO ring ^b and CO ₂ rock.
300 s	278 s	300 s	295 s	311 s 265 w	313 s	292 s	292 s 280 sh	292 s 280 sh	SnO

TABLE 4

251

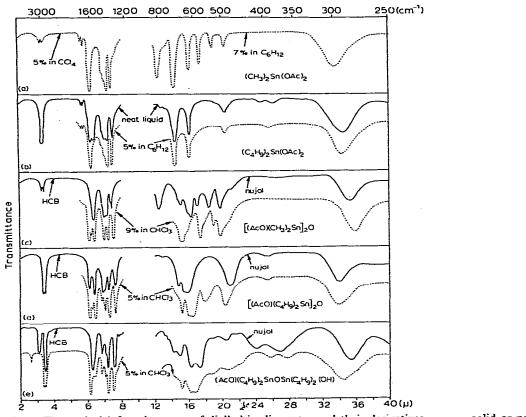


Fig. 2. The typical infrared spectra of dialkyltin diacetates and their derivatives. ——— solid or neat liquid, —— solution.

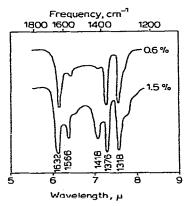


Fig. 3. The change of the relative intensities of CO_2 vibrational bands for $(AcO)(C_4H_9)_2SnOSn(C_4H_9)_2$ -(OH) in benzene.

PMR spectra

PMR spectra were recorded for dimethyltin derivatives in chloroform at various temperatures $(-50^{\circ} \text{ to } + 50^{\circ})$ using a JNM-3H-60 spectrometer, and the results are listed in Table 2.

TABLE 5

RELEVANT INFRARED VIBRATIONAL FREQUENCIES OF $(AcO)R_2SnOSnR_2(OH)$ Positions of bands in cm⁻¹

$R = C_2 H$	5	$R = n - C_3$	H ₇	$R = n - C_4$	H ₉	Assignments
Solid state	CHCl ₃ 5% soln	Solid state	CHCl ₃ 5% soln.	Solid state	CHCl ₃ 5% soln.	
3340 s	3670 w	3260 s	3670 w	3320 s	3660 m	OH str.
1610 s	1618 s 1565 w	1600 s	1620 s 1566 w	1605 s	1620 s 1570 w }	CO_2 asym. str.
1421 w 1386 s 1331 s	1418 w 1380 s 1325 s	1388 s 1333 m	1414 w 1380 s 1325 m	1418 m 1385 s 1330 s	1416 sh 1380 s 1327 s	CO ₂ sym. str. and CH ₃ deform.
673 s		669 s		670 s		CO ₂ scissor.
618 s 589 s	615 s 595 s	618 s 580 s	615 s 595 s	620 s 585 s	615 s 597 s	SnO and CO ₂ out-of-plane bend.
534 s 495 m	535 s 492 m, br	488 w	535 w, br 482 m, br	519 w 488 w	545 m, br 483 m, br	SnC_2 str. and SnO CO_2 rock.
425 m 378 m	385 w 360 w	426 m 377 m	386 w 360 w	423 m 373 m	385 w } 360 w }	SnO and C-C-C bend.
300 m	302 m	310 m	314 m	287 m	293 m	SnO

RESULTS AND DISCUSSION

Dialkyltin diacetates

The typical infrared spectra for these compounds are shown in Fig. 2(a) and (b). The positions of relevant absorption bands and their assignments made by referring to the spectra of sodium $acetate^{16}$ and the corresponding trialkyltin $acetates^{10.18}$, are listed in Table 3. The methyl and ethyl compounds in solution clearly showed two bands due to the SnC₂ antisymmetric and symmetric stretching vibrations, indicating that the C-Sn-C skeleton of these compounds may not be linear. The values of tin-proton coupling constants for the methyl compound listed in Table 2 suggests this conclusion, as discussed in the preceding communication¹⁷. Since dialkyltin diacetates are monomeric in benzene (Fig. 1), CO₂ vibrational bands appeared at the regions 1600–1610 cm⁻¹ and 1370–1380 cm⁻¹ could be attributed to a non-symmetrically chelated configuration of dialkyltin diacetates (I)¹⁷.

In neat liquid or crystalline film, however, an additional band at about

 $CH_{3} = C + 3 = C +$

1565 cm⁻¹, and an increase in intensity of the bands at 1400–1440 cm⁻¹, were observed. The positions of these bands are almost the same as those of CO₂ vibrational bands of trialkyltin acetates in the solid state (1565–1572 cm⁻¹ and 1408–1412 cm⁻¹ respectively)^{10,18}, where acetoxy groups were found to form the bridge between two tin atoms by IR spectra¹⁸ on X-ray analyses¹⁹. Hence, appearance of the additional CO₂ bands may indicate that there are bridging acetoxy groups (II) to some extent in the liquid or crystalline film.

A strong absorption band found at about 300 cm^{-1} for these compounds will be associated to Sn-O(Ac) stretching vibrations, considering that the SnO vibration band of trialkyltin carboxylates has been found^{20,21} at 280–350 cm⁻¹.

General configuration of distannoxane

The structure of tetraalkyl-1,3-disubstituted distannoxanes²² XR₂SnOSnR₂Y (X, Y = electro-negative groups) have been suggested by the results of some physicochemical mearurements to have a dimeric configuration (III)^{23,24,11}. If the substituents X (or Y) are coordinating groups [X = OH, Y = halogen²⁴, NCS²⁵, NO₃²⁶; X, Y = NCS²⁵; X, Y = OSi(CH₃)₃²⁷], there are additional weak intramolecular coordinations.

Tetraalkyl-1,3-diacetoxydistannoxanes, $[(AcO)R_2Sn]_2O$

The butyl compound of this series was reported to be monomeric by Zemlyanskii *et al.*⁶, but Alleston *et al.*¹¹ described it essentially as a dimer. As shown in Fig. 1, the butyl compound is almost dimeric at moderate concentrations in benzene, and its molecular weight decreases with dilution. This tendency was much clearer in chloroform. The methyl compound is hardly soluble in benzene but showed similar behavior in chloroform. This results from dissociation of a dimeric molecule to monomers and not from ionic dissociation of acetoxy groups, because an appreciable electric conductivity could not be observed in chloroform.

$[(AcO)R_2SnOSnR_2(OAc)]_2 \rightleftharpoons 2 (AcO)R_2SnOSnR_2(OAc)$

It has been pointed out by Zemlyanskii *et al.*⁶, that the butyl compound showed the two kinds of CO_2 vibrational bands and they assumed these to originate from crystal effects. The infrared spectrum of this compound in cyclohexane or benzene, however, also showed these two kinds of CO_2 bands (Table 4). The same results were obtained for all the compounds of this series except the methyl compound which showed only one CO_2 band in the solid state [Table 4, Fig. 2(c)]. Therefore, it is clear that the splitting of the CO_2 bands is essentially due to the dimeric configuration, and not to the crystal effect. The exceptional behavior of the methyl compound in the solid state may be explained by the relatively small methyl groups which easily allow intermolecular acetoxy bridges as in the case of dialkyltin diacetates.

In the chloroform solution an additional CO_2 asymmetric stretching band appeared at 1600–1605 cm⁻¹ for each compound. A spectral change was also reflected in the region of the skeletal SnO vibrations: In addition to the strong broad bands at 610–650 cm⁻¹ (ref. 25) and 470–510 cm⁻¹ (ref. 30), which are characteristic of the dimers, a broad band appeared at about 560 cm⁻¹ in chloroform solution. Taking account of the molecular weight, these additional bands may be attributable to monomers. PMR spectra of the methyl compound at 20° in 9% chloroform, where almost all species of the solute are dimeric, showed one sharp signal at τ 8.05 ppm assigned to methyl protons of acetoxy groups, and two almost overlapped signals at τ 9.18 and 9.20 ppm which are assigned to the methyl protons attached to tin (Table 2). Essentially the same spectra were observed from -50° to $+50^{\circ}$. It is remarkable that the chemical shifts of the two kinds of Sn-CH₃ are not so different as those of tetramethyl-1,3-bis(trimethylsiloxy)distannoxane ($\Delta \tau = 0.1$ ppm)²⁸. The fact that we could not find two kinds of CH₃COO in the PMR spectra agrees with the result of Davies *et al.* for trialkyltin carboxylates²⁹.

Tetraalkyl-1-acetoxy-3-hydroxydistannoxanes, $(AcO)R_2SnOSnR_2(OH)$

The positions and the shapes of the OH stretching band and the SnO bands²⁵ at about 600 cm⁻¹ of these compounds shown in Table 5 and Fig. 2(e) are indicative of the dimeric configuration (III) as was indicated in $XR_2SnOSnR_2(OH)$ (X = halogen)²⁴.

The only CO_2 asymmetric stretching band in the solid state splits into two bands in solution. In the case of the butyl compound, the molecular weight in benzene (Fig. 1) and the relative intensity of the infrared bands (Fig. 3) at 1566 and 1418 cm⁻¹, which might be associated with the bridging acetoxy groups, increase with increasing concentrations. Since the position of the OH band at 3660 cm⁻¹ did not show an appreciable change in these conditions, it is considered that the association of the dimers may occur through acetoxy bridges.

ACKNOWLEDGEMENT

The authors thank Professor C. R. DILLARD*, Dr. M. OHARA and Dr. K. YASUDA for helpful discussions, and Dr. T. OMAE for a part of the data on the dialkyltin diacetates.

SUMMARY

A series of dialkyltin diacetates and their derivatives, $R_2Sn(OAc)_2$, [(AcO)- $R_2Sn]_2O$ and (AcO) $R_2SnOSnR_2(OH)$ (R = CH₃, C_2H_5 , n- C_3H_7 , n- C_4H_9), have been prepared. Dialkyltin diacetates are monomeric in benzene, having a nonsymmetrically chelated octahedral configuration; bridging of acetoxy groups seems to occur in the neat liquid or in the crystalline state. The compounds [(AcO) $R_2Sn]_2O$ are dimeric at moderate concentrations and dissociate to monomers in dilute benzene and chloroform solutions. This change is reflected in changes of the CO₂ and SnO infrared bands. The dimeric methyl compound showed two tin-methyl proton chemical shifts with a small difference. Molecular weight of (AcO)(C_4H_9)₂SnOSn-(C_4H_9)₂(OH) increases with concentration from that of dimer. This seems to be caused by the bridging of the acetoxy groups among dimers.

REFERENCES

1 A. CAHOURS, Ann. Chem., 114 (1860) 354.

2 T. HARADA, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 35 (1939) 290; 36 (1939) 497; 38 (1940) 146.

^{*} Fulbright Research Fellow in Chemistry at Osaka University, 1965-1966.

- 3 T. HARADA, Bull. Chem. Soc. Japan, 17 (1942) 283.
- 4 T. HARADA, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 42 (1947) 57.
- 5 K. A. KOCHESKOV, E. M. PANOV AND N. N. ZEMLYANSKII, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, (1961) 2255.
- 6 N. N. ZEMLYANSKII, E. M. PANOV, N. A. SLOVOKHROWA, O. P. SHAMAGINA AND K. A. KOCHESKOV, Dokl. Akad. Nauk SSSR, 149 (1963) 312.
- 7 K. M. KRIZHANSKII, O. YU. OKHLOBYSTIN, A. V. POPOV AND B. I. ROGOZEV, Dokl. Akad. Nauk SSSR, 160 (1965) 1121.
- 8 N. N. ZEMLYANSKII, E. M. PANOV, O. P. SHAMAGINA AND K. A. KOCHESKOV, Zh. Obsch. Khim., 35 (1965) 1029.
- 9 R. OKAWARA AND E. G. ROCHOW, J. Am. Chem. Soc., 82 (1960) 3285.
- 10 R. OKAWARA, D. E. WEBSTER AND E. G. ROCHOW, J. Am. Chem. Soc., 82 (1960) 3287.
- 11 D. L. ALLESTON, A. G. DAVIES AND M. HANCOCK, J. Chem. Soc., (1964) 5744.
- 12 D. L. ALLESTON, A. G. DAVIES AND M. HANCOCK, J. Chem. Soc., (1963) 5469.
- 13 M. YOKOO, J. OGURA AND T. KANZAWA, Polymer Letters, 5 (1967) 57.
- 14 R. K. INGHAM, S. O. ROSENBERG AND H. GILMAN, Chem. Rev., 60 (1960) 459.
- 15 A. WEISSBERGER, Technique of Organic Chemistry, 7, Organic Solvents, Interscience, New York, 2nd ed., 1955.
- 16 K. NAKAMURA, J. Chem. Soc. Japan, 79 (1958) 1411.
- 17 Y. MAEDA, C. R. DILLARD AND R. OKAWARA, Inorg. Nucl. Chem. Letters, 2 (1966) 197.
- 18 M. J. JANSSEN, J. G. A. LUUTEN AND G. J. M. VAN DER KERK, Rec. Trav. Chim., 82 (1963) 90.
- 19 N. KASAI et al., private communication.
- 20 R. OKAWARA AND M. OHARA, J. Organometal. Chem., 1 (1963) 360.
- 21 D. H. LOHMANN, J. Organometal. Chem., 4 (1965) 382.
- 22 R. C. POLLER, J. Organometal. Chem., 3 (1965) 321.
- 23 R. OKAWARA, Proc. Chem. Soc., (1961) 383.
- 24 R. OKAWARA AND M. WADA, J. Organometal. Chem., 1 (1963) 81.
- 25 M. WADA AND R. OKAWARA, J. Organometal. Chem., 8 (1967) 261.
- 26 K. YASUDA, H. MATSUMOTO AND R. OKAWARA, J. Organometal. Chem., 6 (1966) 528.
- 27 R. OKAWARA, N. KASAI AND K. YASUDA, 2nd Intern. Symp. on Organometallic Chemistry, Wisconsin, 1965.
- 28 W. J. CONSIDINE AND G. A. BAUM, J. Organometal. Chem., 3 (1965) 308.
- 29 A. G. DAVIES AND M. HANCOCK, private communication; cf. ref. 22.
- 30 Y. KAWASAKI, T. TANAKA AND R. OKAWARA, J. Organometal. Chem., 6 (1966) 95.